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ABSTRACT 

A count model is based on a discrete statistical distribution which models the probabilistic 

behaviour of a number of events in a fixed interval of time and can be used to predict the 

behaviour of a real traffic stream and thus, can be used to evaluate performance of networks. In 

this study, the aim is to analyze count data modelling of Internet traffic using multiple discrete 

distributions and provide a comparative study. Network traffic models have evolved 

significantly over the lifetime of the Internet. The earliest models were largely Poisson-based, 

designed for ease of analysis. The discovery of traffic characteristics like the presence of over 

dispersion and under dispersion and the presence of outliers in the count data required 

significant changes to traffic models. In this study, we have examined this evolution from the 

early models to the modern models on the discrete distributions that account for complexities 

and properties like over dispersion and under dispersion. We have studied the traffic behaviour 

on the real data sets and presented a statistical analysis and best fitted distribution model of 

internet traffic, the data used for the modelling is synthetic due to the limitations of Memory and 

processing time. The models are evaluated in R Software. Maximum Likelihood Estimator 

(MLE) technique is used to identify the maximum MLE log-likelihood which characterized as 

best fitted distribution. Poisson, Negative Binomial, Weibull and Mittag Leffler fitted on 

multiple datasets are presented. Among the four distributions,  Mittag Leffler is identified as the 

best traffic characteristic based on MLE maximum log-likelihood. .These results are valuable 

on modeling future tele-traffic engineering algorithm like policing, shaping, scheduling or 

queue which is based in real IP-based campus network environment. It is also useful for future 

prediction of tele-traffic models. 
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CHAPTER 1 

INTRODUCTION 

1.1. BACKGROUND STUDY OF THE RESEARCH 

For several past years researchers have been looking for a stochastic process which 

could be used as an accurate and simple model for Internet traffic. A traffic model is a 

stochastic process which can be used to predict the behaviour of a real traffic stream. 

Ideally, the traffic model should accurately represent all of the relevant statistical 

properties of the original traffic, but such a model may become overly complex. A 

major application of traffic models is in predicting the behaviour of the traffic as it 

passes through a network. 

Network traffic modeling is used as the basis for the design of network applications and 

for capacity planning of networking systems. Given the impact of poor choices in this 

arena, it is clear that the validity of the underlying models is of critical importance. The 

factors used to evaluate a system are taken directly from the underlying traffic model. 

This use requires that traffic models be both valid, resembling reality closely, and 

sufficiently simple as to allow queuing analysis models to reach a steady-state. 

Understanding the underlying traffic behavior of backbone and edge networks is vital  

for traffic engineering tasks such as link capacity planning, traffic classification, and 

anomaly detection. Traffic characterization is typically addressed through statistical 

analysis of individual link(s) and network-wide traffic volume properties such as counts 

of bytes and packets, as well as by analyzing the distributional behavior of particular 

packet header fields.  



 

Thus, Modelling a count variable (the number of events occurring in a given time 

interval) is a common task to predict the behavior of the traffic stream and to evaluate 

the performance of the network. The widespread popularity of the Poisson model for 

count data arises but it fails when the data possess overdispersion and underdispersion. 

1.2. OVERVIEW 

Understanding the underlying traffic behavior of backbone and edge networks is vital 

for traffic engineering tasks such as link capacity planning, traffic classification, 

and anomaly detection. Traffic characterization is typically addressed through statistical 

analysis of individual link(s) and network-wide traffic volume properties such as counts 

of bytes and packets, as well as by analyzing the distributional behavior of particular 

packet header fields. Modelling a count variable (the number of events occurring in a 

given time interval) is a common task to predict the behavior of the traffic stream and to 

evaluate the performance of the network.  The widespread popularity of the Poisson 

model for count data arises, in part, from its derivation as the number of arrivals in a 

given time period assuming exponentially distributed interarrival times. But of the 

thousands of other count models that have been developed over the years (see Wimmer 

and Altmann 1999 for an excellent synthesis), very few share this straightforward 

connection between a count model and its timing model equivalent. The standard 

method of count data modeling is Poisson distribution, which has the assumption of 

equidispersion, as identified by the same mean and variance values. The modelling of 

count data frequently causes the emergence of over-dispersion which has a higher 

variance than mean itself. Many research could be found especially for handling over-

dispersion problem such Negative Binomial, Zero Inflated Poisson and Quasi approach. 

However, a few method in research could be fitted under-dispersion problem, such as 

Generalized Poisson which able to handle both problems, but has limited range of 



 

under-dispersion values. Count data models allow for regression-type analyses when the 

dependent variable of interest is a numerical count. They can be used to estimate the 

effect of a policy intervention either on the average rate or on the probability of no 

event, a single event, or multiple events. The effect can, for example, be identified from 

a comparison of treatment and non-treatment units while adjusting for confounding 

variables, or from a difference in-differences comparison, where the effect of the policy 

is deduced from comparing the pre-post change in the outcome distribution for a 

treatment group with the pre-post change for a control group. 

1.3. CORE OBJECTIVE OF THE STUDY 

The objective of this study is to discuss the modelling, estimation and testing of count 

data models from the viewpoint of an application in the domain of traffic engineering 

and inspect mathematical stochastic models on Internet Traffic.  The idea is to study the 

characteristics possess in the Internet Traffic traces taken from the website of CAIDA 

and map corresponding count data. Model count data on to multiple discrete 

distributions and analyse the results to figure out the best possible fit offered by any 

distribution. 

1.4. METHODOLOGY FOR ANALYSIS: 

The data traces are taken from the CAIDA – The Internet Traffic Archive. Count Data 

of trace files are obtained using LibTrace  library, the count data is than undergone 

though process of finding the underlying pattern in them and their characteristics by 

plotting their time aggregation plots. Moreover, the actual simulation and estimation is 

performed on the synthetic dataset due to the limitation of memory. The dataset are 

generated using multiple approaches and their fitted distributions behaviors are 

examined. Model selection and evaluation is done on the basis of AIC, BIC and log-

likelihood parameters values. The methodology is discussed in detail in chapter six. 



 

1.5. ORGANIZATION OF THE ISP:  

Chapter one would be discussing the background study of the research, overview of the 

research’s  topic, core objective and the methodology that would be perused in the 

thesis would be discussed. Further, chapter two is about Literature Review regarding 

count data modelling and different distributions. Chapter three includes details of count 

models, what is a count variable and why count models should be used. Later in this 

chapter different count models are discussed. Time Aggregation plots are also presented 

here. Another important aspect of index of dispersion is also described inside this 

chapter. Chapter four discusses about Parameter Estimation and different technique 

available for the Parameter Estimation. The technique of Maximum Likelihood 

Estimation is discussed in detail in this chapter. Chapter five describes the existing 

Internet Traffic Archives platforms. How trace files can be converted into a count data 

using LibTrace is also a part of this chapter. Modelling and simulation is performed in 

R, therefore main packages of R is discussed here. Chapter six discusses the details of 

the practical work done in R and the results of simulations are discussed. Furthermore, 

tabular and graphical representation of the comparative study is shown here. Last 

chapter holds the concluding remarks, limitations and gaps faced while carrying out this 

research and the future enhancements.  

 

 

 

 

 

 

 



 

CHAPTER 2 

LITERATURE REVIEW 

2.1. LITERATURE REVIEW 

The design of robust and reliable networks and network services is becoming 

increasingly difficult in today's world. The only path to achieve this goal is to develop a 

detailed understanding of the traffic characteristics of the network.  Analysis of the 

traffic provides information like the average load, the bandwidth requirements for 

different applications, and numerous other details. Traffic models enables network 

designers to make assumptions about the networks being designed based on past 

experience and also enable prediction of performance for future requirements. Traffic 

models are used in two fundamental ways: 

(1) As part of an analytical model or 

(2) To drive a Discrete Event Simulation (DES). 

In case of Internet traffic modelling, two aspects of a count model are important for 

consideration. Namely, the required length of time interval for recording counts, and the 

probability mass which a model assigns to the quantiles in body and tail (extreme 

values) parts of the distribution. 

 

(Black McShane 1996) introduced a generalized model for count data based upon an 

assumed Weibull interarrival process that nests the Poisson and negative binomial 

models as special cases. The computational intractability is overcome by deriving the 

Weibull count model using a polynomial expansion which then allows for closed-form 

inference (integration term-by-term) when incorporating heterogeneity due to the 

conjugacy of the expansion and a commonly employed gamma distribution. In addition, 



 

we demonstrate that this new Weibull count model can model both over- and 

underdispersed count data. Weibull regression models provide the best fits, that is, a 

slight improvement in log-likelihood for the Weibull model without heterogeneity and a 

significant improvement for the heterogeneous Weibull model, compared to the Poisson 

and Winkelmann’s gamma count model. 

 

(Alexander Kasyoki Muoka 2016) Statistical simulation technique was used to compare 

the performance of these count data models. Count data sets with different proportions 

of zero were simulated. Akaike Information Criterion (AIC) was used in the simulation 

study to compare how well several count data models fit the simulated datasets. From 

the results of the study it was concluded that negative binomial model fits better to over-

dispersed data which has below 0.3 proportion of zeros and that hurdle model performs 

better in data with 0.3 and above proportion of zero. 

 

(Ver Hoef and Boveng (2007) made a comparison between quasi‐Poisson and negative 

binomial regressions as two contrasting approaches for dealing with overdispersed 

count data in ecology. With an example on harbor seal data they showed that the choice 

of approach can affect the outcome of the analysis. The authors recommended sound 

scientific reasoning and graphical investigation of the data as the basis for model choice. 

Yet, different processes underlying overdispersion in ecological data and resulting in 

various mean–variance relationships have not been thoroughly investigated. 

 

(Asad Arfeen 2013) This paper highlights the important role played by the two 

parameter Weibull distribution in Internet traffic modeling. They have shown the 

versatile role played by the simple two parameter Weibull distribution in Internet traffic 



 

structural modeling. The Weibull shape parameter can capture traffic inter-arrival 

(packets, flows and dynamics as it traverses from access to core networks; and, can also 

be used to zoom in/out between packet-, flow- and session inter-arrivals at a certain tier 

(access or core) sessions). 

 

(Asad Arfeen – 2019)  An extensive literature survey with new developments in 

Internet traffic count data modelling has been presented. The contributions in this article 

establish the notion of the “Renewal of Renewal Theory in Internet Traffic Modelling”. 

This is the first study which presents a duplex analysis of all structural components of 

Internet traffic (packets, flows and sessions) at access and backbone core tiers of 

Internet. The results have been validated by using real traffic data fitness tests and trace 

driven queueing performance evaluation. The results of this article will help researchers 

use simple renewal processes as a better alternate to complex self-similar or modulated 

stochastic processes for modelling all structural components of Internet traffic at any 

time scale with physical justifications. A count data model is used to model event 

counts without recording the timing of individual events. Without doubt it can be stated 

that the statistical properties of count data are inherited from the statistical properties of 

the underlying interarrival time distribution (Winkelmann and Baetschmann, 2014). 

Therefore, the relation between a count model and its timing process (if it is known) can 

be very useful in augmenting the capabilities of a count model. A comparative study is 

performed on real internet traffic traces and found out that sum of probability mass 

assigned by the Weibull count model is closest to the sum of probability mass of session 

count data in every network. 

 



 

(ARISTIDIS K. NIKOLOULOPOULOS) They have discussed the most commonly 

used mixed Poisson distributions, namely the negative binomial, the Poisson inverse 

Gaussian and the generalized Poisson distributions. The results show that for small 

mean and overdispersion, all the models are quite the same, whereas for larger means 

the generalized Poisson and the Poisson inverse Gaussian distributions have larger tails 

than the negative binomial, and the differences are much larger. In practice, it is not 

easy to discriminate between them for small counts and small overdispersion, but for 

large overdispersion discrimination is relatively easy. 

 

(Wan Fairos – 2010) They have reviewed several modeling approach for count data. A 

good starting point is the basic count model of Poisson regression model. When there is 

an evidence of overdispersion, an negative binomial regression model is a better choice. 

The Negative Binomial regression model is more flexible as it allows for the variance to 

be greater than mean and considers the observed heterogeneity in the model. Another 

situation exists when overdispersion results from a high frequency of zero counts. If 

such condition occurs, a modified Poisson models such as Hurdles regression or Zero-

Inflated regression model might give a more satisfactory fit to the data. 

 

(Cameron – 1986) They have discussed the modelling strategy based on some simple 

tests, in which one can proceed to increasingly flexible and data-coherent models, 

beginning with the basic Poisson model. We have provided a detailed application of this 

modelling strategy to illustrate both its simplicity and feasibility. Our results are broadly 

supportive of the QGPMLE procedure advocated by GMT but we also advocate further 

exploration of suitable categorical variable mnodels as an alternative approach. 



 

(EL Plan – 2014) Modeling and Simulation is a powerful tool to characterize, quantify, 

understand, predict, power, optimize, and rationalize (pre)clinical trial data and studies. 

The Poisson model, a close relative of the survival model, is the basis for all count data 

models. Adaptations for handling overdispersion, underdispersion, autocorrelation, or 

inhomogeneity were proposed in the literature and presented here. 

 

(Emilio Gómez-Déniz – 2010) They have introduced a new probability mass function 

by discretizing the continuous failure model of the Lindley distribution. The model 

obtained is over-dispersed and competitive with the Poisson distribution to fit 

automobile claim frequency data. After revising some of its properties a compound 

discrete Lindley distribution is obtained in closed form. This model is suitable to be 

applied in the collective risk model when both number of claims and size of a single 

claim are implemented into the model. The new compound distribution fades away to 

zero much more slowly than the classical compound Poisson distribution, being 

therefore suitable for modelling extreme data. 

 

 

 

 

 

 

 

 

 



 

CHAPTER 3 

COUNT MODELS FOR INTERNET TRAFFIC 

3.1. Why use Count Models? 

There are two main uses of count data models in policy evaluation. Often, the focus is 

on determining the effect of a policy change on the average count. Other applications 

exploit the fact that count data models yield predictions for the entire probability 

distribution. In a policy context, one can therefore determine the effect of the policy for 

each value of the outcome. 

3.2. Count Variable 

A count variable is a variable that takes on discrete values (0,1,2, ...) representing the 

number of occurrences of an event in a constant period of time. Substance-using days, 

number of cigarettes smoked a day, number of arrests; number of hospital admissions 

and insurance claims are some examples. A count variable can only take on positive 

integer values or zero because an event cannot happen a negative number of times. 

Because of this situation, count data are inherently positively skewed with a high 

proportion of zeros. Analyzing this type of data poses an obstacle. They are not 

optimally modeled with a normal distribution, especially if the variable of interest is 

sparse (Cameron and Trivedi 2007; Winkelmann 2008; Hilbe 2007) 

3.3. COUNT DATA MODELS:  

3.3.1. Poisson Count Model: 

A random variable Y is said to have a Poisson distribution with parameter µ if it takes 

integer values y = 0, 1, 2, . . . with probability 

 



 

for µ > 0. The mean and variance of this distribution can be shown to be  

E(Y ) = var(Y ) = µ 

Since the mean is equal to the variance, any factor that affects one will also affect the 

other. Thus, the usual assumption of homoscedasticity would not be appropriate for 

Poisson data. 

A useful property of the Poisson distribution is that the sum of independent Poisson 

random variables is also Poisson. Specifically, if Y1 and Y2 are independent with Yi ∼ 

P(µi) for i = 1, 2 then  

Y1 + Y2 ∼ P(µ1 + µ2). 

This result generalizes in an obvious way to the sum of more than two Poisson 

observations. 

The Poisson count model has the following features: 

 The Poisson count model generates stationary counts with no trends, that is, 

event probabilities do not change with time. 

 The Poisson count model implies an exponential distribution for the underlying 

interarrival process and the cumulative interarrival process can be represented by 

the Erlang distribution. 

 The counts resulting from the Poisson count model are independent or 

uncorrelated. 

 The counts resulting from the Poisson count model are equidispersed, that is, the 

variance of counts is equal to their mean. 

 



 

3.3.2. Negative Binomial Count Model  

The negative binomial count model introduces an additional parameter d and can be 

defined as : 

 

 

 

where µ is the mean and d > 0 is the dispersion parameter which controls the variance to 

mean relation of the data produced by the negative binomial count model. 

Negative binomial regression can be used for over-dispersed count data,  that is when 

the conditional variance exceeds the conditional mean. It can be considered as a 

generalization of Poisson regression since it has the same mean structure as Poisson 

regression and it has an extra parameter to model the over-dispersion. If the conditional 

distribution of the outcome variable is over-dispersed, the confidence intervals for the 

Negative binomial regression are likely to be narrower as compared to those from a 

Poisson regression model. 

 

 



 

Negative binomial count model has the following features: 

 The model allows arrival dependence based on positive contagion, that is, an 

arrival (non-arrival) of an event increases (decreases) the probability of the next 

arrival. 

 The model can handle overdispersed data. 

 The model allows likelihood ratio and other standard maximum likelihood tests 

to be implemented. 

 The convolution of the negative binomial random variables with the same 

overdispersion is also negative binomial, irrespective of the mean of the 

component random variables (see page 459 in [Wilkinson, 1956]). The 

analytical form of the convolution of negative binomial random variables has 

been derived in [Furman, 2007]. 

3.3.3. Weibull Count Model 

The probability density function of the Weibull distribution is given as 

 

where c is the shape parameter and λ is the rate parameter. 

The hazard rate of Weibull distribution admits a closed form expression as follows: 

 

 

If N(t) denotes the number of arrivals in time interval (0,t] with interarrival times being 

Weibull distributed, then the Weibull count model is given as 

 

 

 



 

The following features of the Weibull count model: 

 The model allows overdispersed, equidispersed and underdispersed count data. 

 The model is directly connected to the continuous time Weibull distribution for 

all values of the shape parameter. 

 The model is computationally better than the iterative algorithms to calculate 

probability of counts resulting from the Weibull interarrival times; see [Rinne, 

2008], for such algorithms. 

3.3.4. Mittag Leffler Count Model 

The Mittag-Leffler function distribution (MLFD) belongs to the generalized 

hypergeometric and generalized power series families and also arises as weighted 

Poisson distributions. MLFD is a flexible distribution which falls under the domain of 

attraction of stable laws with varying shapes and has a unique mode at zero or it is 

unimodal with one/two non-zero modes. It can be under-, equi- or over- dispersed.  

It’s probability density function is given by: 

 

where α is the shape parameter of this distribution. 

The hazard rate of the Mittag-Leffler distribution can be written as 

 

 

 

 

 



 

An expression for probability of counts is given by : 

 

 

 

 

 

 

The Mittag- Leffler count model 

has the following properties: 

 Poisson count model results as a special case for α = 1. 

 All moments of Mittag-Leffler count model are finite for any α. 

 The distribution has been found to fare well when compared with the hyper-

Poisson and COM-Poisson type negative binomial distributions in its suitability 

in empirical modeling of differently dispersed count data. 

 For the range 0 < α < 1, the hazard rate of Mittag-Leffler count model is a 

decreasing function of time. Therefore, the distribution exhibits negative 

duration dependence which causes overdispersion in the count data. 

3.3.5. Discrete Lindley Distribution 

Bakouch et al. (2014) proposed the discrete Lindley (DL) distribution as a discrete 

version of the continuous Lindley distribution. The pmf of the discrete random variable 

Y corresponding to a continuous random variable X following Lindley distribution   

 

 

 



 

 

 

 

 

 

 

The survival function and CDF are as under: 

 

 

 

 

 

 

It is easy to see that limx→∞r(x;θ)=θ. Hence, the parameter θ can be interpreted as a 

strict upperbound on the failure rate function, an important characteristic for lifetime 

models. 

The properties of Discrete Lindley are as under: 

 P y( ;θ ) is log-concave and therefore, the DLD has an increasing hazard rate 

 DLD is over-dispersed and hence it can be applied to model over-dispersed data. 

 Features include the uni-modality  

3.4. Time Aggregation plots of Internet Traffic 

A graphical representation of Internet traffic count data as a function of increasing time 

interval for traffic aggregation has been introduced in [Paxson & Floyd, 1995; Willinger 

& Paxson, 1998]. These plots display the count data at various increasing time scales to 



 

assess the influence of time aggregation on traffic fluctuations. The multiple time scale 

view of fluctuations in Internet traffic is qualitative in nature, nevertheless, it can serve 

as the first step to understand the behaviour of Internet traffic count data. 

Following are the time aggregation plots for the Real Data (Taken few sample points 

only) 

 

 

 

 

 

3.5. Index of Dispersion for Counts: 

It is important to clearly define the context of dispersion due to its essential role in 

modeling count data, and distributions for modeling these data should take into account 

the data’s dispersion. Generally, the dispersion for any data can be described as the 

variability or spread of the data. In other words, dispersion refers to the stretch or the 

squeeze of a data’s distribution. Specifically, dispersion in count data is formally 

defined in relation to a specified model being fitted to the data (Cameron and Trivedi 



 

(2013) and Hilbe (2014)). In this context, the variance ratio (VR) can be defined as the 

ratio between the observed variance from the data and the theoretical variance from the 

model fit, as: 

VR = observed variance / theoretical variance 

 

Accordingly, modeling any count data might exhibit three types of dispersion; namely, 

over-dispersion, under-dispersion and equi-dispersion. Over-dispersion refers to the 

case when the observed variance of the count data is greater than the expected variance 

specified by the fitted model. Under-dispersion describes the opposite case, where the 

observed variance is less than that theorized by the model. Equi-dispersion refers to the 

case of equal variances. Then, a model that fails to capture the over- or under-dispersion 

in the data and shows different variance than that observed is called an over- or under-

dispersed model. Therefore, the definition of dispersion through the VR can be helpful 

in studying the dispersion of a model. 

Moreover, the dispersion of count data can be defined in relation to the Poisson model. 

Hence, it is common with these data to refer to the dispersion as being relative to 

Poisson. In such a case, the variance of the model is estimated by the sample mean. 

Thus, over-, equi- or under- dispersion relative to Poisson refers to cases where the 

sample variance (observed variance) is greater, equal or smaller than the sample mean 

(theoretical variance), respectively. Therefore, the dispersion of a dataset, under this 

definition, can be identified with regard to the Dip, or the dispersion coefficient, which 

is defined as the ratio of the variance to the mean (variance-to-mean relation): 

 

 



 

 

CHAPTER 4 

PARAMETER ESTIMATION AND TESTING 

4.1. Parameter Estimation 

Parameter estimation mainly consists in characterizing a parameter set consistent with 

measurements, the model and the equation error description. The problem to be solved 

is that of finding the set of admissible parameter values corresponding to an admissible 

error. The uncertainties must be treated by a global analysis of the problem: both the 

equation error and the parameter set are considered unknown. Then, a solution is given 

as a domain of time-variant parameters and a bounded set of the error. This procedure 

consists in explaining the measurements performed at all time by optimising a precision 

criterion based on the poly tope theory. 

 

The essential choice in estimation is between maximum likelihood methods on the one 

hand, based on strong distributional assumptions, and on pseudo-maximum-likelihood 

or maximum quasi-likelihood methods on the other, based on weaker assumptions. If 

the probability distribution of the variable y, is known to belong to a specified 

parametric family, that is, the data generation process is known, and the likelihood 

function is well-behaved, maximum likelihood (ML) is the obvious estimation 

procedure. 

4.1.1. Maximum Likelihood Estimation: 

Maximum likelihood estimation is a method that determines values for the parameters 

of a model. The parameter values are found such that they maximise the likelihood that 

the process described by the model produced the data that were actually observed. 



 

Maximum likelihood is a very general technique for parameter estimation and inference 

in statistics. Suppose we have a density function f(y;θ), characterized 

by some unknown but fixed parameters θ, which could be a parameter θ or a vector of 

parameters θ = (θ1,θ2,...,θP), where P is the number of parameters to be estimated. 

Then, the maximum likelihood method estimates these parameters by finding the values 

of θ that maximize the likelihood of Y and θ. Due to the fact that the likelihoods are all 

positive and the logarithm is an increasing function, the log-likelihood is equivalent to 

the likelihood, and they have their maximum at the same point. Therefore, it would be 

easier to maximize the log-likelihood instead of the likelihood since the summation is 

easier than the product. In other words, this method of estimation can be briefly applied 

according to the following three steps: 

1. Likelihood Function:  

The likelihood function for an observed sample (y1,y2,...,yn) of size n, which is 

identically independent distributed (iid) as f(y;θ) and regarded as a function of θ given 

the sample data, can be defined to be the joint probability function, as follows: 

 

 

 

2. Log-Likelihood Function: 

The log-likelihood function is the natural logarithm of the likelihood function 

which is defined as follows: 

 

 

 



 

3. Maximum Likelihood Estimator:  

An MLE ˆ θML of θ maximizes the likelihood, L(θ;y), or typically, the log-

likelihood `(θ;y): 

 

 

Optimizing the likelihood (or equivalently log-likelihood) functions can be found 

analytically by differentiating the log-likelihood function `(θ;y) with respect to the 

parameter θ and setting the results equal to zero. How ever, for some complicated cases 

this may result in non-linear equations, which might require the application of 

numerical solutions using several algorithms. The complexity of the MLEs depends on 

the form of the probability function f(y;θ). The maximum likelihood method is the most 

commonly applied method of classical inference. This is due to its useful standard large 

sample properties, such as consistency and asymptotic normality. 

Numerous studies have applied this technique to estimate parameters, especially for 

coefficient regression. In other words, the maximum likelihood approach can be applied 

to the traditional normal linear regression to estimate its parameters. Moreover, the 

maximum likelihood approach is used to fit most of the GLMs and Generalized additive 

models for location, scale and shape. 

4.2. Model Evaluation and Validation 

4.2.1 Goodness of Fit Tests 

In this section, several goodness-of-fit measures will be briefly discussed, including the 

Pearson chi-squares, deviance, likelihood ratio test, Akaike Information Criteria (AIC) 

and Bayesian Schwartz Criteria (BSC). 



 

4.2.1.1. Pearson chi-squares 

Two of the most frequently used measures for goodness-of-fit in the Generalized Linear 

Models are the Pearson chi-squares and the deviance. The Pearson chi-squares statistic 

is equivalent to, 

 

 

For an adequate model, the statistic has an asymptotic 

chi-squares distribution with n - p degrees of freedom, where n denotes the number of 

rating classes and p the number of parameters. 

4.2.1.2. Deviance 

The deviance is given by : 

 

 

where g(lu;y) and g(y;y) are the model's log likelihood evaluated respectively under p 

and y. For an adequate model, D also has an asymptotic chi-squares distribution with n - 

p degrees of freedom. Therefore, if the values for both Pearson chi-squares and D are 

close to the degrees of freedom, the model may be considered as adequate. 

The deviance could also be used to compare between two nested models, one of which 

is a simplified version of the other. 

4.2.1.3. Likelihood ratio 

An LRT was used to compare the nested models (i.e., NB vs. Poisson, ZINB vs. ZIP, 

and NBH vs. PH) in order to test whether the over-dispersion parameter would be 

necessary. In LRT, the null hypothesis is for their stricted or constrained model(null 

model)and the alternative hypothesis is for the unrestricted or unconstrained model 

(alternative or full model)(Hilbe2007). 



 

The advantage of using the maximum likelihood method is that the likelihood ratio test 

may be employed to assess the adequacy of the Negative Binomial I (MLE) or the 

Generalized Poisson I (MLE) over the Poisson because both Negative Binomial I 

(MLE) and Generalized Poisson I (NILE) will reduce to the Poisson when the 

dispersion parameter, a, equals zero. 

4.2.1.4. AIC 

The Akaike information criterion was used to evaluate the goodness-of-fit of the six 

models and is defined as follows:  

AIC=−2logL+2p 

 where log L is the maximum of the likelihood function for a fitted model and p is the 

number of parameters in the fitted model. The preferred model is the one with the 

minimum AIC value. (BurnhamandAnderson2004). 

4.2.1.5. BIC  

The BIC is defined as (Schwartz), 

BIC = -2L + p Log(n) 

where L denotes the log likelihood evaluated under u, p the number of parameters and n 

the number of rating classes. For this measure, the smaller the BIC, the better the model 

is. 

4.2.1.6. Rootogram 

Rootogram or Regression models and showed that this is especially useful for 

diagnosing and treating issues such as over dispersion and/or excess zeros in count data 

models. The rootogram compares the observed and expected values graphically by 

plotting histogram-like rectangles or bars for the observed frequencies and a curve for 

the fitted frequencies, all on a square-root scale. There are three types of rootogram: 

standing, hanging and suspended. The basic version, the standing rootogram,is the least 



 

useful among the three. It simply plots rectangles/bars and a curve representing the 

model, but the fit is not easily assessed. Hanging rootograms emphasize the fitted values 

and suspended rootograms, the corresponding residuals.  

4.2.1.7. P-Value 

 The probability of obtaining a chi-square value greater than the above. This is the 

significance level of the test. If this value is less than some predefined alpha level, say 

0.05, the variable is said to be statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

TOOLS, DATASET AND INTERNET TRAFFIC ARCHIVE 

5.1. Internet Traffic Archive: 

5.1.1 THE CENTER FOR APPLIED INTERNET DATA ANALYSIS (CAIDA)  

The Center for Applied Internet Data Analysis (CAIDA) manages network research and 

builds research infrastructure to support large-scale data collection, curation, and data 

distribution to the scientific research community. It maintains a growing number of 

computational and data analysis services. As internet network has reached its prescribed 

limits CAIDA is helping in routing, security, testbeds management. Its data archive is 

based upon sampling of internet traffic as opposed to flow or packet archiving. It does 

not store external data but of its own reaching 32 TB. The storage of meta-data as only 

and indexing of it help in quick access and does not add any overhead burden on 

CAIDA servers. 

5.1.2 WAIKATO INTERNET TRAFFIC STORAGE (WITS) 

The Waikato Internet Traffic (WITS) Storage project maintains and document the 

internet traffic traces for researchers and scientists. It provides only some traces for 

public user because of legal constraints. The too it uses is a library Libtrace, written in C 

language and Java. The library mainly works on packet capturing methods of archiving. 

This library is used by WITS for multiple types of inputs without any losing any 

information. The packet captured by it is archived along with its meta-data in the 

indexing based upon the time and date of capture. However, it is possible to browse the 

WITS archive using but attempts to download the trace files require IPv6 hosts. Wits 

has also mirrored its trace on a repository. These repositories apply certain restriction 

for the usage of their data and required to create accounts for that purpose. 



 

5.1.3 WIDE PROJECT (MAWI GROUP) 

WIDE (MAWI GROUP) project is an initiative to facilitate researchers in the domain of 

internet traffic networks. It provides a data repository of backbone traffic. Traffic traces 

are collected by tcpdump and, after removing privacy information and anonymity, 

removal of TCP and UDP payloads and IP masking, the traces are made open to the 

public. Tcpdpriv is used to remove user data while tcpdstat is used to get summary of a 

tcpdump file in pcap format. It archives packets by tcpdump library. The backbone trace 

of fifteen minutes is capture and archived on daily basis. The trace is available for 

public in zipped format. The sampling points are: first one is trans-pacific 1.5Mbps T1 

line, from U.S. to Japan link and second is 6Bone is located on a FastEthernet segment 

connected to NXPIXP-6 (An IPv6 internet exchange point in Tokyo).            

5.1.4 INTERNET TRAFFIC STATISTICS ARCHIVE (ITSA): 

Internet traffic statistics archive works on flow-level traffic measurement by similar to 

NetFlow
 
or IPFIX from multiple sources. As flow-enabled devices are ubiquitous in 

networks therefore, flow data is the most suitable for the traffic measurement. It 

computes pertinent traffic statistics and then uploads those public accessible repositories 

in the World Wide Web.  

The archive begin its route from the router the forwards the traffic towards archive 

which afterwards captured by NetFlow – a tool for flow capture. Afterwards that 

captured data is processed and repots through JSON are made. 

4.2. LibTrace 

Libtrace is a library for trace processing. It supports multiple input methods, including 

device capture, raw and gz-compressed trace, and sockets; and multiple input formats, 

including pcap and DAG. Libtrace comes bundled with a series of tools that perform 

most common trace manipulation tasks. 
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 These include: 

 traceanon - anonymises trace files 

 traceconvert - converts a trace from one format to another 

 tracediff - reports differences between two trace files 

 traceends - summarises traffic sent and received by endpoints 

 tracefilter - applies a BPF filter to a trace 

 tracemerge - merges multiple trace inputs into a single trace 

 tracepktdump - displays packet contents in a readable format, similar to tcpdump 

 tracereplay - replays a trace file using original timing 

 tracereport - produces a variety of reports on a trace 

 tracertstats - produces stats about an input trace in real time 

 tracesplit - splits trace files 

 tracesplit_dir - splits trace files based on packet direction 

 tracestats - summarises number of bytes and packets matching BPF filters 

 tracesummary - summarises the basic stats for a trace 

 tracetop - reports the busiest flows over time, similar to ntop 

 tracetopends - reports the busiest endpoints in a trace 



 

In this research study, tracertstats tool is used to get packet and byte counts. An example 

of using tracertstats is :  

              tracertstats -i 1 pcap: equinix-nyc.dirA.20190117-125910.UTC.pcap.gz > 

logFile.csv 

Example of the results produced is as under: 

              Where ts = time in milliseconds 

              Packets = packets count  

              Bytes = bytes count                      

 

 

 

4.3. R Software 

The models are fitted and estimated in R software where all models used could be done 

by already existing functions.  

 

 

 

 

 

 

 

 



 

CHAPTER 6 

SIMULATION AND COMPARATIVE STUDY 

6.1. Simulation  

Simulation is carried out on synthetic datasets. Datasets are generated and then passed 

into a model to get fitted graphs. 

6.1. Modelling and Estimation on Synthetic Datasets 

We first validate the reliability of our model selection by applying it to synthetic data. 

6.1.1. Approach – 1  

Using Negative Binomial and Uniform Distribution with zeroes and outliers 

proportion 

• The simulation study for generating synthetic data of counts was carried out by 

considering a proportion of zeroes and outliers. 

• Numbers are generated using Negative Binomial and Uniform Distribution for a 

sample size of 200. 

Steps to generate Synthetic Data using this approach and performing modelling are as 

under: 

Step 1: n = 200 is set to sample size. 

 Step 2: The zero-inflation is defined as 25%.  

Step 3: The outlier ratio is defined as 1%.  

Step 4: The integers between 20 and 39 are defined as the set of outliers.  

Step 5: The number of observations without outliers is determined by the formula  

n1 = n – (outlier ratio) 

That is, n1 = 200 – (0.01x 200) = 198 is obtained.  



 

Step 6: n1 = 198 numbers are generated from Negative Binomial distribution and 

Uniform distribution to obtain count data at the desired zero-inflation ratio (%25).  

Step 7: The remaining 2 observations are randomly selected from the set of outliers 

specified in step 4.  

Step 8: By combining the observations obtained in steps 6 and 7, the number generation 

for the dependent variable (Y) is completed with n = 200 numbers.  

Step 9:  Once synthetic count data is generated, it is passed to all the four distributions 

which are considered in this research scope to get their fitted counts. 

Step 10: Plot their graphs to visualize the result of the comparison study. 

6.1.1.1. Without Outliers: 

Following are the histogram, plots of fitted distributions formed by using the above 

mentioned steps but outliers were not generated in the following approach: 

 

 



 

 

Summary of the data: 

 

 

 

 

 

 

In the above comparison, Mittag Leffler shows a promising result as it assigns low 

mass to the values at the tail end. 

 

Goodness of fit test snapshot is as under: 

 

 

 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  0.000   1.000   3.000   4.071   6.000  16.000 

Mean = 4.070707 

Variance = 13.31477 



 

 

 

 

 

 

 

 

 

 

 

VARIABLE POISSON NEGATIVE 

BINOMIAL 

WEIBULL MITTAG 

LEFFLER 

DISCRETE 

LINDLEY 

Log 

Likelihood 

of 

Parameters 

-603.966 -495.4653 -480.3958 -475.9557 -495.4519 

AIC 1209.932 994.9307 964.7917 955.9114 992.9038 

BIC 1213.220 1001.5072 971.3682 962.4880 996.1921 

Estimates lambda 

4.070707 

size 

1.442637 

mu   

4.070488 

Scale 5.07 

Shape 1 

tail  

1.000000          

scale 

4.070707 

theta 

0.3781611 

Standard 

Error 

0.1433845 0.2186501 

0.2802790 

NA 

NA 

NA 

NA 

0.01943115 

Table 1 : Summary of Results with Data set 1 (Without Outliers) 



 

Plots summary for each fit are as under: 

Poisson Fit: 

 

 

 

 

 

 

 

 

Negative Binomial Fit:  

 



 

Weibull Fit: 

 

Mittag Leffler Fit: 

 

 

 

 

 

 

 

 

 

 

 



 

Discrete Lindley: 

 

 

 

 

 

 

 

 

 

 

Q-Q plot: 

The quantile-quantile (q-q) plot is a graphical technique for determining if two data sets 

come from populations with a common distribution. A q-q plot is a plot of the quantiles 

of the first data set against the quantiles of the second data set.  A 45-degree reference 

line is also 

plotted. 

 

 

  

 

 

 

 



 

 

6.1.1.2. With Outliers 

The algorithm used for the generation of synthetic counts are described in section 6.1.1. 

Histogram of the count is shown below: 

 

 

 

 

 

  

 

 

 

Fitted Distributions are shown here: 

 

 

 

 

 

 

 

 

 

 

 



 

Summary of the Data: 

 

 

  

 

 

 

 

Overdispersion is present since mean and variance is not equal. 

 

Separate plots are shown below: 

Poisson fit: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  0.000   1.000   3.000   4.265   7.000  27.000 

 

Mean  = 4.265 

Variance = 17.06008 



 

Negative Binomial Fit: 

 

 

 

 

 

 

 

 

Weibull Fit: 

 

 

 

 



 

Mittag Leffler Fit: 

 

Discrete Lindley Fit: 

 



 

GOODNESS OF FIT TEST: 

VARIABLE POISSON NEGATIVE 

BINOMIAL 

WEIBULL MITTAG 

LEFFLER 

DISCRETE 

LINDLEY 

Log 

Likelihood 

of 

Parameters 

-625.1082 -510.0775 -493.2325 -490.0884 -511.4333 

AIC 1306.216 1024.155 990.4649 984.1769 1024.867 

BIC 1309.515 1030.752 997.0615 990.7735 1028.165 

Estimates lambda 

4.265 

size 

1.310571   

mu   

4.264671 

 scale     

5.12          

shape     

1.00 

tail  

1.000000          

scale 4.265 

theta 

0.364205 

Standard 

Error 

0.1460308 0.1878656 

0.3011617 

NA 

NA 

NA 

NA 

Std. Error 

0.01859654 

 

 

6.1.2. Approach – 2  

Using Uniform and Exponential Distribution and Round – off values 

• Using Uniform and Exponential Distribution for random numbers generations and 

then rounding it off to get discrete data. 

 

 

 

 

• Nsim=10^2 #number of random variables 

• U= runif(Nsim) 

• X= round(-log(U)) #transforms of uniforms 

• Y= round(rexp(Nsim, 1)) #exponentials 

from R 

 

Table 1 : Summary of Results with Data set 1 (With Outliers) 



 

 

 

 



 

 

6.3. Results and Discussion 

It is important to note that the results of this work were limited to the assumptions that 

the count data has at least some zero count and that the zeros have an importance 

attached to them. In the context of Internet Traffic Modelling, we can map it to the 

assumption of no packet arrived within that particular time frame.  

 

A sample of 200 count data points composed of a fixed proportion of zeros was 

simulated. The algorithm is mentioned in section 6.1.1. The two datasets were generated 

using the same algorithm with a only difference of outliers. In the second dataset, two 

outliers were also added. A regression was performed for each of the simulated data set. 

The average AIC, BIC based on each of the five models (Poisson, Negative binomial, 

Weibull, Mittag Leffler, Discrete Lindley) was obtained. The mean and the variance of 

the simulated response variable were also noted. 

From table 1, for 0.25 proportion of zeros in the simulated count data set, the average 

AIC for Poisson model (1209.932) was the highest while that for Mittag Leffler 

(955.114) was the least. While BIC for Poisson model (1213.220) was the highest and 

for the Mittag Leffler (962.4880) it was the least. AIC and BIC are usually interpreted 

in the lower is better fashion. The mean of the response variable was less than the 

variance. These results are interpreted to mean that if the response variable is made of 

about 25% zeros and it is also over-dispersed (variance > mean), then the best model to 

use is the Mittag Leffler as opposed to other four models. 

 

Poisson model fits badly to over-dispersed count data with about 25% proportion of 

zeros. Other three models are better compared to Poisson as depicted by their lower 



 

AICs. Of all the models under consideration, Mittag Leffler scores the best in terms of 

AIC and BIC values at this level (0.25) of zero proportions in the count data. 

 

Compared with the empirical probability mass of traffic counts (synthetically 

generated), it can be observed that the Mittag Leffler count model has much better 

performance than other count models. In the body part of the traffic count data 

distribution (lower values), Poisson and negative binomial count models provide better 

fits, but they cannot capture the probability mass of the higher count values in the tail 

part of Internet traffic count data distribution. On the other hand, the M ittag Leffler, 

Weibull and Lindley model performs best in the tail part and assigns higher probability 

mass to the higher quantiles but among these Mittag Leffler seems the most promising 

one. The Weibull Count Model gives the next best fits and can be considered as a close 

competitor of the Mittag Leffler count model. 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1. Limitations and Gaps 

The reliability of conclusions on policy effects depends on the validity of the 

assumptions underpinning count data modeling. Several specification tests are discussed 

in for example, for the Poisson assumption of equality between variance and mean 

against the alternative of overdispersion. In practice, it is hard to defend any count data 

model as being exactly true. Rather, such models should be regarded as approximations 

of the truth, the results being approximate effects. And for statistical inference, it is 

always good practice to report robust standard errors. 

The main limitation we have faced here is the limitation of memory and cpu intensive 

processes, since when we used real data set with large numbers, it requires a large 

amount of memory to process and perform iterations and develop a realistic error prone 

model. 

7.2. Concluding Remarks 

In this research we have examined five different discrete distributions to use as count 

data model for Internet traffic. Discrete probability distributions play an important role 

in modeling the counts. The count data sets are generally overdispersed. This study 

introduces a flexible discrete distribution to model these kinds of data sets and we have 

found Mittag Leffler to be very promising in this role. We have shown that the Mittag 

Leffler meets our criteria for a simple and accurate traffic model, since it provides 

support for both over and under dispersion. It can be used to predict future multiplexing 

and link efficiency levels.  The main advantage of the MLF distribution against the 

existing ones is that the statistical properties of this distribution are in explicit forms 



 

which are important in statistical inference. The importance of the MLF distribution is 

demonstrated via two synthetic data sets and compared with four other competitive 

models. 

7.3. Future Work 

 Use of count data model is capacity planning of future networks is also an 

important area both for researchers and network practitioners and service 

providers 

 Inferring full traffic characteristics from partial measurements (Netflow etc) has 

always been a challenging area of research especially for large scale network 

operators. It is expected that further research on Weibull count data modelling 

can help solve this issue 

 Sequential or real-time estimation of the parameters is another challenging task 

which can be very useful in traffic monitoring and anomaly detection. 

 Perform a comparative study on some newly developed discrete distributions. 

 Perform fitting and modelling on real internet traffic traces. 
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APPENDIX 

DEFINITIONS OF TERMS USED IN REPORT 

 Mean 

The mean is the average or the most common value in a collection of numbers. 

In statistics, it is a measure of central tendency of a probability distribution along 

median and mode. It is also referred to as an expected value. 

 Variance 

Variance measures variability from the average or mean. It is calculated by taking 

the differences between each number in the data set and the mean, then squaring the 

differences to make them positive, and finally dividing the sum of the squares by the 

number of values in the data set. 

 Standard Deviation 

A standard deviation is a statistic that measures the dispersion of a dataset relative to 

its mean and is calculated as the square root of the variance. The standard deviation 

is calculated as the square root of variance by determining each data point's 

deviation relative to the mean. If the data points are further from the mean, there is a 

higher deviation within the data set; thus, the more spread out the data, the higher 

the standard deviation. 

 Co-Variates 

Covariates are characteristics (excluding the actual treatment) of the participants in 

an experiment. A covariate can be an independent variable (i.e. of direct interest) or 

it can be an unwanted, confounding variable. Adding a covariate to a model can 

increase the accuracy of your results. 

 

 



 

 Co-variance 

Covariance measures the total variation of two random variables from their 

expected values. 

 Intercept and Intercept only models 

The intercept in a multiple regression model is the mean for the response when all of 

the explanatory variables take on the value 0. 

The regression constant is also known as the intercept thus, 

regression models without predictors are also known as intercepting only models. 

 Quantile 

A quantile defines a particular part of a data set, i.e. a quantile determines how 

many values in a distribution are above or below a certain limit. 

Special quantiles are the quartile (quarter), the quintile (fifth) and percentiles 

(hundredth). 

 Outlier 

An outlier is an observation that lies an abnormal distance from other values in a 

random sample from a population. 

 Probability Mass Function 

 A probability mass function (pmf) is a function over the sample space of a 

discrete random variable X which gives the probability that X is equal to a certain 

value. 

 Hazard Function 

The hazard function (also known as the failure rate, hazard rate, or force of 

mortality)  is the ratio of the probability density function  to the survival 

function , given by 



 

  

 

(1) 

  

 

(2) 

where  is the distribution function . 

 Closed Form 

An equation is said to be a closed-form solution if it solves a given problem in terms 

of functions and mathematical operations from a given generally-accepted set. For 

example, an infinite sum would generally not be considered closed-form. 


